Optimizing Peatland Fire Mitigation Policy Through Technology and Innovation
Keywords:
Policy, Mitigation, Fire, Peatland, Technology, Innovation.Abstract
Peatland fires are one of the biggest environmental problems in Indonesia with a wide impact on the environment and public health. Efforts to prevent and mitigate peatland fires are becoming increasingly important as the intensity of fires increases. Government policies, technological support, and community participation are key to preventing and reducing peatland fires. This study aims to examine the synergy between policies, technologies, and the role of communities in mitigating peatland fires. The method used is a qualitative approach, by collecting data from various relevant studies and previous literature. The data obtained are then analyzed to explore the relationship between these factors. The study results indicate that government policies have an important role in fire mitigation, although there are challenges in their implementation, such as low levels of compliance and coordination between institutions. Technology, especially in peatland monitoring and early warning systems, has made a significant contribution to fire prevention. However, obstacles in infrastructure and technology adoption remain obstacles that need to be overcome. Community participation and wider education are also needed to support the effectiveness of policies and technologies in fire prevention. In conclusion, a strong synergy between policies, technologies, and communities is essential to achieving sustainable peatland fire mitigation.
References
Abdelmajeed, A. Y. A., & Juszczak, R. (2024). Challenges and Limitations of Remote Sensing Applications in Northern Peatlands: Present and Future Prospects. Remote Sensing, 16(3), 591.
Alexandrovskiy, A. L., Chendev, Y. G., & Yurtaev, A. A. (2022). Soils with the second humus horizon, paleochernozems, and the history of pedogenesis at the border between forest and steppe areas. Eurasian Soil Science, 55(2), 127-146.
Broda, M., & Hill, C. A. (2021). Conservation of waterlogged wood—past, present and future perspectives. Forests, 12(9), 1193.
Busman, N. A., Maie, N., Sangok, F. E., Melling, L., & Watanabe, A. (2023). Impacts of agricultural drainage on the quantity and quality of tropical peat soil organic matter in different types of forests. Geoderma, 439, 116670.
Chen, Y., Fang, J., Zhang, X., Miao, Y., Lin, Y., Tu, R., & Hu, L. (2023). Pool fire dynamics: Principles, models and recent advances. Progress in Energy and Combustion Science, 95, 101070.
De la Barreda-Bautista, B., Boyd, D. S., Ledger, M., Siewert, M. B., Chandler, C., Bradley, A. V., ... & Sjögersten, S. (2022). Towards a monitoring approach for understanding permafrost degradation and linked subsidence in arctic peatlands. Remote Sensing, 14(3), 444.
Dhandapani, S., Evers, S., Boyd, D. S., Yesuf, G., Kinneen, L., Haughan, A., & Sjogersten, S. (2023). Assessment of variability of peat physicochemical properties, subsidence and their interactions within Selangor forests. European Journal of Soil Science, 74(6), e13431.
Dhandapani, S., Evers, S., Ritz, K., & Sjögersten, S. (2021). Nutrient and trace element concentrations influence greenhouse gas emissions from Malaysian tropical peatlands. Soil Use and Management, 37(1), 138-150.
Drollinger, S., Knorr, K. H., Knierzinger, W., & Glatzel, S. (2020). Peat decomposition proxies of Alpine bogs along a degradation gradient. Geoderma, 369, 114331.
Falatehan, A. F., & Sari, D. A. P. (2020). Characteristics of peat biomass as an alternative energy and its impact on the environment. Solid State Technology, 63(5), 4700-4712.
Flanagan, N. E., Wang, H., Winton, S., & Richardson, C. J. (2020). Low‐severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition. Global Change Biology, 26(7), 3930-3946.
Goldstein, J. E., Graham, L., Ansori, S., Vetrita, Y., Thomas, A., Applegate, G., ... & Cochrane, M. A. (2020). Beyond slash‐and‐burn: The roles of human activities, altered hydrology and fuels in peat fires in Central Kalimantan, Indonesia. Singapore Journal of Tropical Geography, 41(2), 190-208.
Hamim, T., Muslih, M., & Furqon, E. (2023). Transboundary Haze Pollution in Indonesia and Malaysia in the Perspective of Islamic Law and International Environmental Law. UNIFIKASI: Jurnal Ilmu Hukum, 10(2), 88-105.
Iskandar, W., Watanabe, T., Marwanto, S., Sabiham, S., & Funakawa, S. (2020). Landform affects the distribution of mineral nutrients in the tropical peats: a case study in a peatland of Siak, Indonesia. Soil Science and Plant Nutrition, 66(4), 602-614.
Jefferson, U., Carmenta, R., Daeli, W., & Phelps, J. (2020). Characterising policy responses to complex socio-ecological problems: 60 fire management interventions in Indonesian peatlands. Global Environmental Change, 60, 102027.
Juutinen, A., Tolvanen, A., Saarimaa, M., Ojanen, P., Sarkkola, S., Ahtikoski, A., ... & Tuominen, S. (2020). Cost-effective land-use options of drained peatlands–integrated biophysical-economic modeling approach. Ecological Economics, 175, 106704.
Khanday, S. A., Hussain, M., & Das, A. K. (2021). A review on chemical stabilization of peat. Geotechnical and Geological Engineering, 39(8), 5429-5443.
Kirkland, M., Atkinson, P. W., Pearce-Higgins, J. W., de Jong, M. C., Dowling, T. P., Grummo, D., ... & Ashton-Butt, A. (2023). Landscape fires disproportionally affect high conservation value temperate peatlands, meadows, and deciduous forests, but only under low moisture conditions. Science of the Total Environment, 884, 163849.
Lewis, K., Rumpang, E., Kho, L. K., McCalmont, J., Teh, Y. A., Gallego-Sala, A., & Hill, T. C. (2020). An assessment of oil palm plantation aboveground biomass stocks on tropical peat using destructive and non-destructive methods. Scientific Reports, 10(1), 2230.
Manasypov, R. M., Pokrovsky, O. S., Shirokova, L. S., Auda, Y., Zinner, N. S., Vorobyev, S. N., & Kirpotin, S. N. (2021). Biogeochemistry of macrophytes, sediments and porewaters in thermokarst lakes of permafrost peatlands, western Siberia. Science of the Total Environment, 763, 144201.
Martynyuk, A. A., Savchenkova, V. A., Korshunov, N. A., & Kotelnikov, R. V. (2021). Methods for the use of the best Russian innovations in forest fire detection and suppression. Journal of Forestry Research, 1-9.
Mishra, S., Page, S. E., Cobb, A. R., Lee, J. S. H., Jovani‐Sancho, A. J., Sjögersten, S., ... & Wardle, D. A. (2021). Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. Journal of Applied Ecology, 58(7), 1370-1387.
Paul, A., Hussain, M., & Ramu, B. (2021). The physicochemical properties and microstructural characteristics of peat and their correlations: reappraisal. International Journal of Geotechnical Engineering.
Phung, V. L. H., Uttajug, A., Ueda, K., Yulianti, N., Latif, M. T., & Naito, D. (2022). A scoping review on the health effects of smoke haze from vegetation and peatland fires in Southeast Asia: Issues with study approaches and interpretation. Plos one, 17(9), e0274433.
Pivello, V. R., Vieira, I., Christianini, A. V., Ribeiro, D. B., da Silva Menezes, L., Berlinck, C. N., ... & Overbeck, G. E. (2021). Understanding Brazil’s catastrophic fires: Causes, consequences and policy needed to prevent future tragedies. Perspectives in Ecology and Conservation, 19(3), 233-255.
Puspitaloka, D., Kim, Y. S., Purnomo, H., & Fulé, P. Z. (2021). Analysis of challenges, costs, and governance alternative for peatland restoration in Central Kalimantan, Indonesia. Trees, Forests and People, 6, 100131.
Rowland, J. A., Bracey, C., Moore, J. L., Cook, C. N., Bragge, P., & Walsh, J. C. (2021). Effectiveness of conservation interventions globally for degraded peatlands in cool-climate regions. Biological Conservation, 263, 109327.
Saleh, H., Surya, B., Annisa Ahmad, D. N., & Manda, D. (2020). The role of natural and human resources on economic growth and regional development: With discussion of open innovation dynamics. Journal of Open Innovation: Technology, Market, and Complexity, 6(4), 103.
Schaney, M. L., Kite, J. S., Schaney, C. R., & Thompson, J. A. (2021). Evidence of mid-Holocene (Northgrippian Age) dry climate recorded in organic soil profiles in the central Appalachian Mountains of the eastern United States. Geosciences, 11(11), 477.
Shtang, A., Ponomareva, T., & Skryabina, A. (2024). Pigment Complex, Growth and Chemical Composition Traits of Boreal Sphagnum Mosses (Mire System “Ilasskoe”, North-West of European Russia). Plants, 13(17), 2478.
Sinclair, A. L., Graham, L. L., Putra, E. I., Saharjo, B. H., Applegate, G., Grover, S. P., & Cochrane, M. A. (2020). Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland. Science of the Total Environment, 699, 134199.
Stirling, E., Fitzpatrick, R. W., & Mosley, L. M. (2020). Drought effects on wet soils in inland wetlands and peatlands. Earth-Science Reviews, 210, 103387.
Szajdak, L. W., Jezierski, A., Wegner, K., Meysner, T., & Szczepański, M. (2020). Influence of drainage on peat organic matter: Implications for development, stability, and transformation. Molecules, 25(11), 2587.
Taufik, M., Widyastuti, M. T., Sulaiman, A., Murdiyarso, D., Santikayasa, I. P., & Minasny, B. (2022). An improved drought-fire assessment for managing fire risks in tropical peatlands. Agricultural and Forest Meteorology, 312, 108738.
Volkova, L., Krisnawati, H., Adinugroho, W. C., Imanuddin, R., Qirom, M. A., Santosa, P. B., ... & Weston, C. J. (2021). Identifying and addressing knowledge gaps for improving greenhouse gas emissions estimates from tropical peat forest fires. Science of the Total Environment, 763, 142933.
Wang, Y., Paul, S. M., Jocher, M., Espic, C., Alewell, C., Szidat, S., & Leifeld, J. (2021). Soil carbon loss from drained agricultural peatland after coverage with mineral soil. Science of the Total Environment, 800, 149498.
Wiesner, B. J., & Dargusch, P. (2022). The social license to restore—perspectives on community involvement in Indonesian peatland restoration. Land, 11(7), 1038.
Wilpert, K. V. (2022). Forest soils—what’s their peculiarity?. Soil Systems, 6(1), 5.
Yuwati, T. W., Rachmanadi, D., Pratiwi, Turjaman, M., Indrajaya, Y., Nugroho, H. Y. S. H., ... & Mendham, D. (2021). Restoration of degraded tropical peatland in Indonesia: A review. Land, 10(11), 1170.
Zulkarnaini, Z., Nasution, M. S., Meiwanda, G., Istihat, Y., & Bedasari, H. (2024). Peatland Management Policy: How to Build a Good Public-Private Partnership?. Jurnal Ilmiah Peuradeun, 12(1), 315-332.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 TEC EMPRESARIAL

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.