Clinical Implications of Necroptosis Biomarkers in Sepsis
Keywords:
Necroptosis, Receptor-Interacting Protein Kinases, Mixed Lineage Kinase Domain-Like Pseudokinase, Sepsis, Estradiol.Abstract
Necroptosis is a cell death process that is attractively unique and separate from apoptosis, as indicated by the involvement of receptor-interacting protein kinases (RIPK) and mixed lineage kinase domain pseudokinase (MLKL). This highlights important biomarkers of necroptosis: RIPK1, RIPK3, and MLKL, which encompass their structural, functional, and contributory roles in disease pathogenesis. We explore the intricate molecular mechanisms that underpin necroptosis, emphasizing the activation and complex interactions among RIPK1, RIPK3, and MLKL. The clinical relevance of necroptosis biomarkers is thoroughly assessed, particularly in the context of sepsis, where elevated levels of RIPK1, RIPK3, and MLKL are strongly associated with disease severity and patient prognoses. Techniques for the detection and quantification of these biomarkers are reviewed, along with current therapeutic strategies aimed at modulating necroptosis. Furthermore, we evaluate the impact of various therapeutic agents, such as estradiol, on the levels of these biomarkers and their potential to alter the course of disease progression. The review concludes with a forward-looking perspective on future research directions and the potential for innovative therapeutic interventions targeting necroptosis.
References
Baratchian, M., Davis, C. A., Shimizu, A., Escors, D., Bagnéris, C., Barrett, T., et al. (2016). Distinct activation mechanisms of NF-κB regulator inhibitor of NF-κB kinase (IKK) by isoforms of the cell death regulator cellular FLICE-like inhibitory protein (cFLIP). Journal of Biological Chemistry, 291(14), 7608–7620.
Bergamaschi, D., Vossenkamper, A., Lee, W. Y. J., Wang, P., Bochukova, E., & Warnes, G. (2019). Simultaneous polychromatic flow cytometric detection of multiple forms of regulated cell death. Apoptosis, 24(5–6), 453–464.
Berghe, T. V., Linkermann, A., Jouan-Lanhouet, S., Walczak, H., & Vandenabeele, P. (2014). Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nature Reviews Molecular Cell Biology, 15(2), 135–147.
Boldin, M. P., Varfolomeev, E. E., Pancer, Z., Mett, I. L., Camonis, J. H., & Wallach, D. (1995). A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. Journal of Biological Chemistry, 270(14), 7795–7798.
Chaouhan, H. S., Vinod, C., Mahapatra, N., Yu, S. H., Wang, I. K., Chen, K. B., et al. (2022). Necroptosis: A pathogenic negotiator in human diseases. International Journal of Molecular Sciences, 23(21), 12714.
Chen, J., Kos, R., Garssen, J., & Redegeld, F. (2019). Molecular insights into the mechanism of necroptosis: The necrosome as a potential therapeutic target. Cells, 8(12), 1486.
Cheng, Z., Abrams, S. T., Toh, J., Wang, S. S., Wang, Z., Yu, Q., et al. (2020). The critical roles and mechanisms of immune cell death in sepsis. Frontiers in Immunology, 11, 1918.
Choi, M. E., Price, D. R., Ryter, S. W., & Choi, A. M. K. (2019). Necroptosis: A crucial pathogenic mediator of human disease. JCI Insight, 4(15), e128834.
Cui, J., Shen, Y., & Li, R. (2013). Estrogen synthesis and signaling pathways during ageing: From periphery to brain. Trends in Molecular Medicine, 19(3), 197–209.
Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., et al. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology, 1(2), 112–119.
Dhuriya, Y. K., & Sharma, D. (2018). Necroptosis: A regulated inflammatory mode of cell death. Journal of Neuroinflammation, 15(1), 199.
Dillon, C. P., Weinlich, R., Rodriguez, D. A., Cripps, J. G., Quarato, G., Gurung, P., et al. (2014). RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell, 157(5), 1189–1202.
Duprez, L., Bertrand, M. J. M., Vanden Berghe, T., Dondelinger, Y., Festjens, N., & Vandenabeele, P. (2012). Intermediate domain of receptor-interacting protein kinase 1 (RIPK1) determines switch between necroptosis and RIPK1 kinase-dependent apoptosis. Journal of Biological Chemistry, 287(18), 14863–14872.
Fan, P., Tyagi, A. K., Agboke, F. A., Mathur, R., Pokharel, N., & Jordan, V. C. (2018). Modulation of nuclear factor-kappa B activation by the endoplasmic reticulum stress sensor PERK to mediate estrogen-induced apoptosis in breast cancer cells. Cell Death Discovery, 4, 15.
Galluzzi, L., Kepp, O., Krautwald, S., Kroemer, G., & Linkermann, A. (2014). Molecular mechanisms of regulated necrosis. Seminars in Cell & Developmental Biology, 35, 24–32.
Galluzzi, L., & Kroemer, G. (2011). Necroptosis turns TNF lethal. Immunity, 35(6), 849–851.
Grootjans, S., Vanden Berghe, T., & Vandenabeele, P. (2017). Initiation and execution mechanisms of necroptosis: An overview. Cell Death & Differentiation, 24(7), 1184–1195.
Guo, H. J., Rahimi, N. R., & Tadi, P. (2023). Biochemistry, ubiquitination. In StatPearls. Treasure Island, FL: StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK556052/
Han, L., Witmer, P. D., Casey, E., Valle, D., & Sukumar, S. (2007). DNA methylation regulates microRNA expression. Cancer Biology & Therapy, 6(8), 1284–1288.
Hildebrand, J. M., Tanzer, M. C., Lucet, I. S., Young, S. N., Spall, S. K., Sharma, P., et al. (2014). Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proceedings of the National Academy of Sciences, 111(42), 15072–15077.
Jouan-Lanhouet, S., Arshad, M. I., Piquet-Pellorce, C., Martin-Chouly, C., Le Moigne-Muller, G., Van Herreweghe, F., et al. (2012). TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death & Differentiation, 19(12), 2003–2014.
Kaczmarek, A., Vandenabeele, P., & Krysko, D. V. (2013). Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity, 38(2), 209–223.
Kaiser, W. J., Sridharan, H., Huang, C., Mandal, P., Upton, J. W., Gough, P. J., et al. (2013). Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. Journal of Biological Chemistry, 288(43), 31268–31279.
Kanasaki, K., & Kalluri, R. (2009). The biology of preeclampsia. Kidney International, 76(8), 831–837.
Karpuzoglu, E., & Ahmed, S. A. (2006). Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: Implications for immunity, autoimmune diseases, and apoptosis. Nitric Oxide, 15(3), 177–186.
Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nature Immunology, 11(5), 373–384.
Kearney, C. J., & Martin, S. J. (2017). An inflammatory perspective on necroptosis. Molecular Cell, 65(6), 965–973.
Khoury, M. K., Gupta, K., Franco, S. R., & Liu, B. (2020). Necroptosis in the pathophysiology of disease. The American Journal of Pathology, 190(2), 272–285.
Kim, S. W., Roh, J., & Park, C. S. (2016). Immunohistochemistry for pathologists: Protocols, pitfalls, and tips. Journal of Pathology and Translational Medicine, 50(6), 411–418.
Kolb, J. P., Oguin, T. H., Oberst, A., & Martinez, J. (2017). Programmed cell death and inflammation: Winter is coming. Trends in Immunology, 38(10), 705–718.
Lakbar, I., & Leone, M. (2021). An insight depicting estradiol pathway in sepsis. Minerva Anestesiologica, 87(5), 505–507.
Lakhani, N. J., Venitz, J., Figg, W. D., & Sparreboom, A. (2003). Pharmacogenetics of estrogen metabolism and transport in relation to cancer. Current Drug Metabolism, 4(6), 505–513.
Lakoh, S., Jiba, D. F., Baldeh, M., Vandy, A. O., Benya, H., Lado, M., et al. (2020). Sepsis and septic shock in COVID-19: A scoping review of the research data. Research Square. https://www.researchsquare.com/article/rs-30474/v1
Lee, H. L., Pike, R., Chong, M. H. A., Vossenkamper, A., & Warnes, G. (2018). Simultaneous flow cytometric immunophenotyping of necroptosis, apoptosis and RIP1-dependent apoptosis. Methods, 134–135, 56–66.
Lerman, Y. V., & Kim, M. (2015). Neutrophil migration under normal and sepsis conditions. Cardiovascular & Hematological Disorders—Drug Targets, 15(1), 19–28.
Li, L., Tong, A., Zhang, Q., Wei, Y., & Wei, X. (2021). The molecular mechanisms of MLKL-dependent and MLKL-independent necrosis. Journal of Molecular Cell Biology, 13(1), 3–14.
Li, W., & Yuan, J. (2023). Targeting RIPK1 kinase for modulating inflammation in human diseases. Frontiers in Immunology, 14, 1159743.
Liu, Y., Liu, T., Zhang, D., Du, S., Girani, L., Qi, D., et al. (2019). RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). International Journal of Molecular Medicine, 44.
Lukens, J. R., Vogel, P., Johnson, G. R., Kelliher, M. A., Iwakura, Y., Lamkanfi, M., et al. (2013). RIP1-driven autoinflammation targets IL-1α independently of inflammasomes and RIP3. Nature, 498(7453), 224–227.
Luedde, M., Lutz, M., Carter, N., Sosna, J., Jacoby, C., Vucur, M., et al. (2014). RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovascular Research, 103(2), 206–216.
Mabjeesh, N. J., Escuin, D., LaVallee, T. M., Pribluda, V. S., Swartz, G. M., Johnson, M. S., et al. (2003). 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell, 3(4), 363–375.
Mair, K. M., Gaw, R., & MacLean, M. R. (2020). Obesity, estrogens and adipose tissue dysfunction—Implications for pulmonary arterial hypertension. Pulmonary Circulation, 10(3), 2045894020952019.
Martinez, J., Malireddi, R. K. S., Lu, Q., Cunha, L. D., Pelletier, S., Gingras, S., et al. (2015). Molecular characterization of LC3-associated phagocytosis (LAP) reveals distinct roles for Rubicon, NOX2, and autophagy proteins. Nature Cell Biology, 17(7), 893–906.
Martinez, J., Malireddi, R. K. S., Lu, Q., Cunha, L. D., Pelletier, S., Gingras, S., et al. (2015). Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nature Cell Biology, 17(7), 893–906.
McKinnon, K. M. (2018). Flow cytometry: An overview. Current Protocols in Immunology, 120, 5.1.1–5.1.11.
McNamara, C. R., Ahuja, R., Osafo-Addo, A. D., Barrows, D., Kettenbach, A., Skidan, I., et al. (2013). Akt regulates TNFα synthesis downstream of RIP1 kinase activation during necroptosis. PLoS ONE, 8(3), e56576.
Morgan, M. J., & Kim, Y. S. (2022). Roles of RIPK3 in necroptosis, cell signaling, and disease. Experimental & Molecular Medicine, 54(10), 1695–1704.
Murphy, J. M. (2020). The killer pseudokinase mixed lineage kinase domain-like protein (MLKL). Cold Spring Harbor Perspectives in Biology, 12(8), a036376.
Murphy, J. M., Czabotar, P. E., Hildebrand, J. M., Lucet, I. S., Zhang, J. G., Alvarez-Diaz, S., et al. (2013). The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity, 39(3), 443–453.
Najjar, M., Saleh, D., Zelic, M., Nogusa, S., Shah, S., Tai, A., et al. (2016). RIPK1 and RIPK3 kinases promote cell death-independent inflammation by Toll-like receptor 4. Immunity, 45(1), 46–59.
Negroni, A., Cucchiara, S., & Stronati, L. (2015). Apoptosis, necrosis, and necroptosis in the gut and intestinal homeostasis. Mediators of Inflammation, 2015, 250762.
Newton, K., Sun, X., & Dixit, V. M. (2004). Kinase RIP3 is dispensable for normal NF-kappa B signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Molecular and Cellular Biology, 24(4), 1464–1469.
Nguyen, H. B., Rivers, E. P., Abrahamian, F. M., Moran, G. J., Abraham, E., Trzeciak, S., et al. (2006). Severe sepsis and septic shock: Review of the literature and emergency department management guidelines. Annals of Emergency Medicine, 48(1), 28–54.
Ospina, J. A., Brevig, H. N., Krause, D. N., & Duckles, S. P. (2004). Estrogen suppresses IL-1beta-mediated induction of COX-2 pathway in rat cerebral blood vessels. American Journal of Physiology-Heart and Circulatory Physiology, 286(5), H2010–H2019.
Park, M. Y., Ha, S. E., Vetrivel, P., Kim, H. H., Bhosale, P. B., Abusaliya, A., et al. (2021). Differences of key proteins between apoptosis and necroptosis. BioMed Research International, 2021, 3420168.
Pati, S., Singh Gautam, A., Dey, M., Tiwari, A., & Kumar Singh, R. (2023). Molecular and functional characteristics of receptor-interacting protein kinase 1 (RIPK1) and its therapeutic potential in Alzheimer’s disease. Drug Discovery Today, 28(12), 103750.
Pati, S., Singh Gautam, A., Dey, M., Tiwari, A., & Singh, R. K. (2023). Molecular and functional characteristics of receptor-interacting protein kinase 1 (RIPK1) and its therapeutic potential in Alzheimer’s disease. Drug Discovery Today, 28(12), 103750.
Pati, S., Singh Gautam, A., Dey, M., Tiwari, A., & Singh, R. K. (2023). Molecular and functional characteristics of receptor-interacting protein kinase 1 (RIPK1) and its therapeutic potential in Alzheimer’s disease. Drug Discovery Today, 28(12), 103750.
Petrie, E. J., Sandow, J. J., Jacobsen, A. V., Smith, B. J., Griffin, M. D. W., Lucet, I. S., et al. (2018). Conformational switching of the pseudokinase domain promotes human MLKL tetramerization and cell death by necroptosis. Nature Communications, 9, 2422.
Petrie, E. J., Czabotar, P. E., & Murphy, J. M. (2019). The structural basis of necroptotic cell death signaling. Trends in Biochemical Sciences, 44(1), 53–63.
Ramírez-de-Arellano, A., Gutiérrez-Franco, J., Sierra-Diaz, E., & Pereira-Suárez, A. L. (2021). The role of estradiol in the immune response against COVID-19. Hormones (Athens), 20(4), 657–667.
Rittirsch, D., Hoesel, L. M., & Ward, P. A. (2007). The disconnect between animal models of sepsis and human sepsis. Journal of Leukocyte Biology, 81(1), 137–143.
Ros, U., Peña-Blanco, A., Hänggi, K., Kunzendorf, U., Krautwald, S., Wong, W. W. L., et al. (2017). Necroptosis execution is mediated by plasma membrane nanopores independent of calcium. Cell Reports, 19(1), 175–187.
Sakr, Y., Elia, C., Mascia, L., Barberis, B., Cardellino, S., Livigni, S., et al. (2013). The influence of gender on the epidemiology of and outcome from severe sepsis. Critical Care, 17(2), R50.
Salama, S. A., Kamel, M. W., Botting, S., Salih, S. M., Borahay, M. A., Hamed, A. A., et al. (2009). Catechol-O-methyltransferase expression and 2-methoxyestradiol affect microtubule dynamics and modify steroid receptor signaling in leiomyoma cells. PLoS ONE, 4(10), e7356.
Schworer, S. A., Smirnova, I. I., Kurbatova, I., Bagina, U., Churova, M., Fowler, T., et al. (2014). Toll-like receptor-mediated down-regulation of the deubiquitinase cylindromatosis (CYLD) protects macrophages from necroptosis in wild-derived mice. Journal of Biological Chemistry, 289(20), 14422–14433.
Seo, J., Nam, Y. W., Kim, S., Oh, D. B., & Song, J. (2021). Necroptosis molecular mechanisms: Recent findings regarding novel necroptosis regulators. Experimental & Molecular Medicine, 53(6), 1007–1017.
Shan, B., Pan, H., Najafov, A., & Yuan, J. (2018). Necroptosis in development and diseases. Genes & Development, 32(5–6), 327–340.
Shenoy, V., Kanasaki, K., & Kalluri, R. (2010). Pre-eclampsia: Connecting angiogenic and metabolic pathways. Trends in Endocrinology & Metabolism, 21(9), 529–536.
Sirois, M. (2016). Elsevier’s Veterinary Assisting Textbook (3rd ed.). https://vetbooks.ir/elseviers-veterinary-assisting-textbook-3rd-edition/
Stanger, B. Z., Leder, P., Lee, T. H., Kim, E., & Seed, B. (1995). RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell, 81(4), 513–523.
Sun, X., Yin, J., Starovasnik, M. A., Fairbrother, W. J., & Dixit, V. M. (2002). Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3. Journal of Biological Chemistry, 277(11), 9505–9511.
Sun, Z., Pan, Y., Qu, J., Xu, Y., Dou, H., & Hou, Y. (2020). 17β-Estradiol promotes trained immunity in females against sepsis via regulating nucleus translocation of RelB. Frontiers in Immunology, 11, 1591.
Tanaka, R., Tsutsui, H., Kobuchi, S., Sugiura, T., Yamagata, M., Ohkita, M., et al. (2012). Protective effect of 17β-estradiol on ischemic acute kidney injury through the renal sympathetic nervous system. European Journal of Pharmacology, 683(1–3), 270–275.
Tsang, G., Insel, M. B., Weis, J. M., Morgan, M. A. M., Gough, M. S., Frasier, L. M., et al. (2016). Bioavailable estradiol concentrations are elevated and predict mortality in septic patients: A prospective cohort study. Critical Care, 20(1), 335.
Vandenabeele, P., Grootjans, S., Callewaert, N., & Takahashi, N. (2013). Necrostatin-1 blocks both RIPK1 and IDO: Consequences for the study of cell death in experimental disease models. Cell Death & Differentiation, 20(2), 185–187.
Vázquez-Martínez, E. R., García-Gómez, E., Camacho-Arroyo, I., & González-Pedrajo, B. (2018). Sexual dimorphism in bacterial infections. Biology of Sex Differences, 9(1), 27.
Wang, B., Li, J., Gao, H. M., Xing, Y. H., Lin, Z., Li, H. J., et al. (2017). Necroptosis regulated proteins expression is an early prognostic biomarker in patient with sepsis: A prospective observational study. Oncotarget, 8(48), 84066–84073.
Wang, D. R., Wu, X. L., & Sun, Y. L. (2022). Therapeutic targets and biomarkers of tumor immunotherapy: Response versus non-response. Signal Transduction and Targeted Therapy, 7(1), 1–27.
Wang, H., Sun, L., Su, L., Rizo, J., Liu, L., Wang, L. F., et al. (2014). Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Molecular Cell, 54(1), 133–146.
Wang, X. N., Yang, Z. H., Wang, X. K., Zhang, Y., Wan, H., Song, Y., et al. (2014). Distinct roles of RIP1–RIP3 hetero- and RIP3–RIP3 homo-interaction in mediating necroptosis. Cell Death & Differentiation, 21(11), 1709–1720.
Weniger, M., D’Haese, J. G., Angele, M. K., & Chaudry, I. H. (2015). Potential therapeutic targets for sepsis in women. Expert Opinion on Therapeutic Targets, 19(11), 1531–1543.
Wilkerson, M. J. (2012). Principles and applications of flow cytometry and cell sorting in companion animal medicine. Veterinary Clinics of North America: Small Animal Practice, 42(1), 53–71.
Wohltmann, C. D., Franklin, G. A., Boaz, P. W., Luchette, F. A., Kearney, P. A., Richardson, J. D., et al. (2001). A multicenter evaluation of whether gender dimorphism affects survival after trauma. American Journal of Surgery, 181(4), 297–300.
Wu, X., Yang, Z., Wang, X., Zhang, Y., Wan, H., Song, Y., et al. (2014). Distinct roles of RIP1–RIP3 hetero- and RIP3–RIP3 homo-interaction in mediating necroptosis. Cell Death & Differentiation, 21(11), 1709–1720.
Xerri, A., Gallardo, F., Kober, F., Mathieu, C., Fourny, N., Tran, T. T., et al. (2022). Female hormones prevent sepsis-induced cardiac dysfunction: An experimental randomized study. Scientific Reports, 12, 4939.
Xu, Z., Mu, S., Liao, X., Fan, R., Gao, W., Sun, Y., et al. (2020). Estrogen protects against liver damage in sepsis through inhibiting oxidative stress mediated activation of pyroptosis signaling pathway. PLoS ONE, 15(10), e0239659.
Yu, Z., Jiang, N., Su, W., & Zhuo, Y. (2021). Necroptosis: A novel pathway in neuroinflammation. Frontiers in Pharmacology, 12, 701564.
Zhao, J., Jitkaew, S., Cai, Z., Choksi, S., Li, Q., Luo, J., et al. (2012). Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proceedings of the National Academy of Sciences, 109(14), 5322–5327.
Zhou, Y., Cai, Z., Zhai, Y., Yu, J., He, Q., He, Y., et al. (2024). Necroptosis inhibitors: Mechanisms of action and therapeutic potential. Apoptosis, 29(1), 22–44.
Zhang, M. L., Chen, H., Yang, Z., Zhang, M. N., Wang, X., Zhao, K., et al. (2021). 17β-Estradiol attenuates LPS-induced macrophage inflammation in vitro and sepsis-induced vascular inflammation in vivo by upregulating miR-29a-5p expression. Mediators of Inflammation, 2021, 9921897.
Zhang, Y., Liu, T., Zhang, D., Du, S., Girani, L., Qi, D., et al. (2019). RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy (Review). International Journal of Molecular Medicine, 44(1), 7–16.
Zhu, C. L., Wang, Y., Liu, Q., Li, H. R., Yu, C. M., Li, P., et al. (2022). Dysregulation of neutrophil death in sepsis. Frontiers in Immunology, 13, 963955.
Zhu, K., Liang, W., Ma, Z., Xu, D., Cao, S., Lu, X., et al. (2018). Necroptosis promotes cell-autonomous activation of proinflammatory cytokine gene expression. Cell Death & Disease, 9(5), 500.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 TEC EMPRESARIAL

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






