Mathematical Analysis of Knowledge-Based Integration in Agricultural Supply Chains: A Structural Equation Modeling Approach with Multivariate Statistical Applications
DOI:
https://doi.org/10.1229/tecempresarialjournal.v20i2.574Keywords:
knowledge integration, supply chain sustainability, PLS-SEM validation, digital transformationAbstract
This study presents a mathematical analysis of knowledge-based integration mechanisms in agricultural supply chains using partial least squares structural equation modeling. We examine functional relationships between knowledge integration dimensions and sustainability outcomes through advanced multivariate statistical methods including bootstrapping procedures, discriminant validity testing, and moderation analysis. Data from 186 organizations in Thailand's pineapple industry were analyzed using comprehensive validation techniques. Our framework demonstrates significant positive relationships between knowledge absorption, transformation, and utilization processes and sustainability dimensions, with path coefficients ranging from 0.192 to 0.394. Digital capabilities significantly moderate eight of nine tested relationships. Statistical validation through heterotrait-monotrait ratio analysis and bias-corrected confidence intervals confirms model robustness. This research contributes to applied multivariate analysis in complex organizational systems and demonstrates structural equation modeling utility for understanding multidimensional relationships in real-world contexts.
References
Jöreskog, K. G. (2005, February). Structural equation modeling with ordinal variables using LISREL.
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological bulletin, 107(2), 238.
Bollen, K. A., & Long, J. S. (1992). Tests for structural equation models: introduction. Sociological Methods & Research, 21(2), 123-131.
Byrne, B. M. (2013). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. psychology press.
Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern methods for business research, 295(2), 295-336.
Sarstedt, M., Hair, J. F., Pick, M., Liengaard, B. D., Radomir, L., & Ringle, C. M. (2022). Progress in partial least squares structural equation modeling use in marketing research in the last decade. Psychology & Marketing, 39(5), 1035-1064.
Hair Jr, J.F.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review 2014, 26, 106-121. https://doi.org/10.1108/EBR-10-2013-0128.
Henseler, J. (2017). Partial least squares path modeling. Advanced methods for modeling markets, 361-381.
Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of research in Marketing, 26(4), 332-344.
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological bulletin, 103(3), 411.
Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford publications.
MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual review of psychology, 51(1), 201-226.
Grant, R. M. (1996). Toward a knowledge‐based theory of the firm. Strategic management journal, 17(S2), 109-122.
Grant, R. M. (1996). Toward a knowledge‐based theory of the firm. Strategic management journal, 17(S2), 109-122.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16, 74-94.
Bollen, K. A. (1995). Structural equation models that are nonlinear in latent variables: A least-squares estimator. Sociological methodology, 223-251.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43, 115-135.
Rönkkö, M., & Cho, E. (2022). An updated guideline for assessing discriminant validity. Organizational research methods, 25(1), 6-14.
Aiken, L. S., West, S. G., & Reno, R. R. (1991). Multiple regression: Testing and interpreting interactions. sage.
Dawson, J. F. (2014). Moderation in management research: What, why, when, and how. Journal of business and psychology, 29(1), 1-19.
Gefen, D., Straub, D., & Boudreau, M. C. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the association for information systems, 4(1), 7.
Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic management journal, 20(2), 195-204.
McDonald, R. P. (2013). Test theory: A unified treatment. psychology press.
Mulaik, S.A. Linear Causal Modeling with Structural Equations, first ed., Chapman and Hall/CRC, Boca Raton, 2009. ISBN: 978-1-42-009198-2.
Jöreskog, K. G., Sörbom, D., & Du Toit, S. H. C. (2001). LISREL 8: New statistical features. Scientific Software International.
Wold, H. (1985). Partial Least Squares. Encyclopedia of statistical sciences, vol 6 Kotz, S & Johnson, NL.
Bollen, K. A., & Pearl, J. (2013). Eight myths about causality and structural equation models. In Handbook of causal analysis for social research (pp. 301-328). Dordrecht: Springer Netherlands.
Edwards, J. R., & Bagozzi, R. P. (2000). On the nature and direction of relationships between constructs and measures. Psychological methods, 5(2), 155.
Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of consumer research, 30(2), 199-218.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
Netemeyer, R. G., Bearden, W. O., & Sharma, S. (2003). Scaling procedures: Issues and applications. sage publications.
Burt, R. S. (2004). Structural holes and good ideas. American journal of sociology, 110(2), 349-399.
Coleman, J. S. (1994). Foundations of social theory. Harvard university press.
Department of Business Development. Thailand SME Database 2024, first ed., Ministry of Commerce, Bangkok, 2024.
Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial least squares structural equation modeling (PLS-SEM) using R: A workbook (p. 197). Springer Nature.
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research methods, 39(2), 175-191.
Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford publications.
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. routledge.
Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological bulletin, 52(4), 281.
Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological bulletin, 56(2), 81.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334.
Raykov, T. (1997). Estimation of composite reliability for congeneric measures. Applied Psychological Measurement, 21(2), 173-184.
Comrey, A. L., & Lee, H. B. (2013). A first course in factor analysis. Psychology press.
Kahle, L. R. (1994). Book Review: Marketing Research: An Applied Orientation.
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics.
Rönkkö, M., & Cho, E. (2022). An updated guideline for assessing discriminant validity. Organizational research methods, 25(1), 6-14
Chin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. Statistical strategies for small sample research, 1(1), 307-341.
Tenenhaus, M., Vinzi, V., Chatelin, Y., & Lauro, C. (2005). PLS Path Modeling Computational Statistics & Data Analysis, v. 48
Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. Chapman and Hall/CRC.
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior research methods, 40(3), 879-891.
Ouyang, C., Wang, Z., Chen, Y., Mu, X., & Zhu, P. (2024). A primer on near-field communications for next-generation multiple access. Proceedings of the IEEE.
Sathyanarayana, S., & Mohanasundaram, T. (2024). Fit indices in structural equation modeling and confirmatory factor analysis: reporting guidelines. Asian Journal of Economics, Business and Accounting, 24(7), 561-577.
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101-107.
Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial management & data systems, 116(1), 2-20.
Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information systems research, 14(2), 189-217.
Henseler, J., & Fassott, G. (2010). Testing moderating effects in PLS path models: An illustration of available procedures (pp. 713-735). Springer Berlin Heidelberg.
Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological bulletin, 96(1), 201.
Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of educational and behavioral statistics, 31(4), 437-448.
Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford publications.
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. Journal of applied psychology, 88(5), 879
Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. Journal of management, 12(4), 531-544.
Harman, H. H. (1976). Modern factor analysis. University of Chicago press.
Kock, N. (2015). Common method bias in PLS-SEM: A full collinearity assessment approach. International Journal of e-Collaboration (ijec), 11(4), 1-10.
Mentzer, J. T., & Lambert, D. M. (2014, October). Estimating nonresponse bias in mail surveys: a replication study. In Marketing Horizons: A 1980's Perspective: Proceedings of the 1980 Academy of Marketing Science (AMS) Annual Conference (pp. 222-224). Cham: Springer International Publishing.
Rogelberg, S. G., & Stanton, J. M. (2007). Introduction: Understanding and dealing with organizational survey nonresponse. Organizational research methods, 10(2), 195-209.
Nunnally, J. C. (1975). Psychometric theory—25 years ago and now. Educational Researcher, 4(10), 7-21.
DeVellis, R. F., & Thorpe, C. T. (2021). Scale development: Theory and applications. Sage publications. [70] Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory Third Edition. McGraw-Hili. Inc. https://doi. org/34567890 DOCmoC, 998765.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16, 74-94.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
Black, W., & Babin, B. J. (2019). Multivariate data analysis: Its approach, evolution, and impact. In The great facilitator: Reflections on the contributions of Joseph F. Hair, Jr. to marketing and business research (pp. 121-130). Cham: Springer International Publishing.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43, 115-135.
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. routledge.
Edeh, E., Lo, W. J., & Khojasteh, J. (2023). Review of Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook: By Joseph F. Hair Jr., G. Tomas M. Hult, Christian M. Ringle, Marko Sarstedt, Nicholas P. Danks, Soumya Ray. Cham, Switzerland: Springer, (2021). 197 pp. 0, OpenAccess; 59.99, Hardcover Book.
Russell, D. W. (2002). In search of underlying dimensions: The use (and abuse) of factor analysis in Personality and Social Psychology Bulletin. Bulletin of Personality and Social Psychology, 28(12), 1629-1646.
Aiken, L. S., West, S. G., & Reno, R. R. (1991). Multiple regression: Testing and interpreting interactions. sage.
Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of educational and behavioral statistics, 31(4), 437-448.
Loehlin, J. C. (2004). Latent variable models: An introduction to factor, path, and structural equation analysis. Psychology Press.
Whittaker, T. A., & Schumacker, R. E. (2022). A beginner's guide to structural equation modeling. Routledge.
Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological bulletin, 105(3), 430.
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. routledge.
Gavarkovs, A. G., Kusurkar, R. A., Kulasegaram, K., & Brydges, R. (2025). Going beyond the comparison: toward experimental instructional design research with impact. Advances in Health Sciences Education, 30(2), 557-570.
Jaccard, J., & Turrisi, R. (2003). Interaction effects in multiple regression (No. 72). sage.
Bagozzi, R. P., & Fornell, C. (1982). Theoretical concepts, measurements, and meaning. A second generation of multivariate analysis, 2(2), 5-23.
Peter, J. P. (1979). Reliability: A review of psychometric basics and recent marketing practices. Journal of marketing research, 16(1), 6-17.
Biçer, E., Mirtagioğlu, H., Demir, C., Keskin, S., & Demir, Y. (2024). Jackknife ve bootstrap yöntemlerine ilişkin bir uygulama. İstatistik ve Uygulamalı Bilimler Dergisi, (9), 45-56.
Quintana, D. S. (2023). A guide for calculating study-level statistical power for meta-analyses. Advances in Methods and Practices in Psychological Science, 6(1), 25152459221147260.
Kallogjeri, D., & Piccirillo, J. F. (2023). A simple guide to effect size measures. JAMA Otolaryngology–Head & Neck Surgery, 149(5), 447-451.
Bates, S., Hastie, T., & Tibshirani, R. (2024). Cross-validation: what does it estimate and how well does it do it? Journal of the American Statistical Association, 119(546), 1434-1445.
Ingole, P., Baviskar, P. R., Ghuge, M., Dakhare, B. S., Dongre, Y., & Dubey, P. (2025). Optimizing resource allocation in hospitals using predictive analytics and information systems. Journal of Information Systems Engineering and Management, 10, 400-415.
Van Zyl, L. E., & Ten Klooster, P. M. (2022). Exploratory structural equation modeling: Practical guidelines and tutorial with a convenient online tool for Mplus. Frontiers in psychiatry, 12, 795672.
Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford publications.
Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). Partial least squares structural equation modeling. In Handbook of market research (pp. 587-632). Cham: Springer International Publishing.
Guenther, P., Guenther, M., Ringle, C. M., Zaefarian, G., & Cartwright, S. (2023). Improving PLS-SEM use for business marketing research. Industrial Marketing Management, 111, 127-142.
Lambert, L. S., & Newman, D. A. (2023). Construct development and validation in three practical steps: Recommendations for reviewers, editors, and authors. Organizational Research Methods, 26(4), 574-607. [98] Straub, D., Boudreau, M. C., & Gefen, D. (2004). Validation guidelines for IS positivist research. Communications of the Association for Information systems, 13(1), 24.
Ping Jr, R. A. (1995). A parsimonious estimating technique for interaction and quadratic latent variables. Journal of marketing research, 32(3), 336-347.
Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables. Structural equation modeling, 13(4), 497-519.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 TEC EMPRESARIAL

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






