Demand for fixed and mobile telephony: An application of artificial neural networks
DOI:
https://doi.org/10.1229/tecempresarialjournal.v18i2.339Keywords:
Artificial neural networks, demand, fixed telephony, mobile telephonyAbstract
Cataloging goods or services as "extensions of human senses like vision, hearing or touch" shows the importance of the role they play in our lives; as well as the development they have reached driven by human needs; it shows a dynamic and important market. Mobile or cell phone services is the trigger of these expressions, in addition to further topic of commentary, research and concern of the scientific community and international agencies such as The World Economic Forum at Davos. With this investigation we analyzed this market, wherein demand and supply of services and equipment take an active part, striving to meet the users’ growing needs and desires. We sought to analyze, specifically, the demand for fixed and mobile telephony, trying to elucidate a particular situation and an immediate and uncertain future, especially for the participant who bears the consequences, fixed telephony. To this end, we propose the application of innovative techniques, such as the Artificial Neural Networks, which will assist us in this regard.
References
BELL, D.K., DE TIENNE, D.H. y JOSHI, S.A. (2003): «Neural networks as statistical tools for
business researchers», Organizational Research Methods, Vol. 6, Nº 2, pp. 236-265.
CIU (2009): Telefonía móvil. México: The Competitive Intelligence Unit
COFETEL (2006): Índice de producción del sector de telecomunicaciones. México: Cofetel.
COFETEL (2007): Dirección de Información Estadística de Mercados. México: Cofetel.
COCA, C.A.M. (2006, octubre): «Análisis de la demanda: Un enfoque de mercadotecnia». Ponencia
presentada en el XI Foro de Investigación - Congreso Internacional de Contaduría, Administración e Informática, México D.F.
CTC (2004): Estimación de demanda: Informe de modificaciones e insistencias. Chile: Telefónica,
Bayes Inference.
DENTON, J.W. (1995): «How good are neural networks for causal forecasting?», Journal of Business Forecasting Methods and Systems, Vol.14, Nº 2, pp. 17-21.
DIEBOLD, F. (2001): Elementos de pronósticos. México: Thomson Learning.
DINEEN, C. (2000, Julio): «Demand analysis and penetration forecasts for the mobile telephone market in the U.K.», Telecommunications: The Bridge to Globalization in the Information
Society, XIII Conferencia de la Sociedad Internacional de Telecomunicaciones (ITS), Buenos
Aires, Argentina.
DULIBA, K.A. (1991): «Contrasting neural nets with regression in predicting performance in the
transportation industry», Proceedings of the 24th Annual Hawaii International Conference on
System Sciences, 4, 163-170.
EUMED (2004): «Diccionario de economía y finanzas», Extraído el 18 mayo, 2005 de http://www.
eumed.net/cursecon/dic/M.htm.
FRANK, R.H. (2001): Microeconomía y conducta (4ª ed.). España: McGraw-Hill/Interamericana
de España.
GARCÍA, A.P. (2006): La evolución de las telecomunicaciones en México. México: Tecnológico
de Monterrey, EGAP.
GHOSH, S. y RAO, C.R. (1996): Handbook of statistics 13: Design and analysis of experiments.
The Netherlands: Elsevier Science B.V.
GLENN, J.C. (1999): Statistical modeling: From time series to simulation. En J. Glenn (Ed.), Futures Research Methodology Version 1.0, (Chapter 13). Washington DC: Millennium Project,
World Federation of UN Associations.
GORDON, T.J. (1992): «The methods of futures research», The ANNALS of the American Academy
of Political and Social Science, Vol. 522, Nº 1, pp. 36-44.
GRILICHES, Z. (1957): «Hybrid corn: An exploration in the economics of technical change», Econometrica, Vol. 25, Nº 4, pp. 501-522.
GRUBER, H. y VERBOVEN, F. (2001): «The evolution of markets under entry standards and regulation: The case of Global Mobile Telecommunications», International Journal of Industrial
Organization, Vol. 19, Nº 7, pp. 1189-1212.
HOBBS, B.F., HELMAN, U., JITPRAPAIKULSARN, S., KONDA, S. y MARATUKULAM, D.
(1998): «Artificial neural networks for short-term energy forecasting: Accuracy and economic
value», Neurocomputing, Vol. 23, Nº 1-3, pp. 71-84.
HORNIK, K., STINCHCOMBE, M. y WHITE, H. (1989): Multilayer Feedforward Networks are
Universal Approximators. Neural Networks, Vol. 2, Nº 5, pp. 359-366.
ISASI, V.P. y GALVAN, L.I.M. (2004): Redes de neuronas artificiales: Un enfoque práctico. Madrid: Pearson Prentice Hall.
JOHNSON, D.E. (1989): «Harnessing the power of multiple regression», Chemical Engineering,
November, pp. 176-188.
JOSEPH, B., WANG, F.H. y SHIEH, S.S. (1992): «Exploratory data analysis: A comparison of
statistical methods with artificial neural networks», Computers and Chemical Engineering, Vol.
, Nº 4, pp. 413-423.
KEAT, P.G. y YOUNG, P.K. (2004): Economía de empresa (4ª ed.). México: Pearson Prentice
Hall.
KINNEAR, T. y TAYLOR, J. (2000): Investigación de mercados: Un enfoque aplicado (5ª ed.).
Colombia: McGRaw-Hill.
KOTLER, P. (1993): Dirección de la mercadotecnia: análisis, planeación, implementación y control (7ª ed.). México: Prentice Hall.
KOTLER, P. (1996): Dirección de la mercadotecnia: Análisis, planeación, implementación y control (8ª ed.). México: Prentice Hall.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Tec Empresarial

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






