Demand for fixed and mobile telephony: An application of artificial neural networks

Authors

  • Juan Villagómez Universidad Mayor de San Simón

DOI:

https://doi.org/10.1229/tecempresarialjournal.v18i2.339

Keywords:

Artificial neural networks, demand, fixed telephony, mobile telephony

Abstract

Cataloging goods or services as "extensions of human senses like vision, hearing or touch" shows the importance of the role they play in our lives; as well as the development they have reached driven by human needs; it shows a dynamic and important market. Mobile or cell phone services is the trigger of these expressions, in addition to further topic of commentary, research and concern of the scientific community and international agencies such as The World Economic Forum at Davos. With this investigation we analyzed this market, wherein demand and supply of services and equipment take an active part, striving to meet the users’ growing needs and desires. We sought to analyze, specifically, the demand for fixed and mobile telephony, trying to elucidate a particular situation and an immediate and uncertain future, especially for the participant who bears the consequences, fixed telephony. To this end, we propose the application of innovative techniques, such as the Artificial Neural Networks, which will assist us in this regard.

References

BELL, D.K., DE TIENNE, D.H. y JOSHI, S.A. (2003): «Neural networks as statistical tools for

business researchers», Organizational Research Methods, Vol. 6, Nº 2, pp. 236-265.

CIU (2009): Telefonía móvil. México: The Competitive Intelligence Unit

COFETEL (2006): Índice de producción del sector de telecomunicaciones. México: Cofetel.

COFETEL (2007): Dirección de Información Estadística de Mercados. México: Cofetel.

COCA, C.A.M. (2006, octubre): «Análisis de la demanda: Un enfoque de mercadotecnia». Ponencia

presentada en el XI Foro de Investigación - Congreso Internacional de Contaduría, Administración e Informática, México D.F.

CTC (2004): Estimación de demanda: Informe de modificaciones e insistencias. Chile: Telefónica,

Bayes Inference.

DENTON, J.W. (1995): «How good are neural networks for causal forecasting?», Journal of Business Forecasting Methods and Systems, Vol.14, Nº 2, pp. 17-21.

DIEBOLD, F. (2001): Elementos de pronósticos. México: Thomson Learning.

DINEEN, C. (2000, Julio): «Demand analysis and penetration forecasts for the mobile telephone market in the U.K.», Telecommunications: The Bridge to Globalization in the Information

Society, XIII Conferencia de la Sociedad Internacional de Telecomunicaciones (ITS), Buenos

Aires, Argentina.

DULIBA, K.A. (1991): «Contrasting neural nets with regression in predicting performance in the

transportation industry», Proceedings of the 24th Annual Hawaii International Conference on

System Sciences, 4, 163-170.

EUMED (2004): «Diccionario de economía y finanzas», Extraído el 18 mayo, 2005 de http://www.

eumed.net/cursecon/dic/M.htm.

FRANK, R.H. (2001): Microeconomía y conducta (4ª ed.). España: McGraw-Hill/Interamericana

de España.

GARCÍA, A.P. (2006): La evolución de las telecomunicaciones en México. México: Tecnológico

de Monterrey, EGAP.

GHOSH, S. y RAO, C.R. (1996): Handbook of statistics 13: Design and analysis of experiments.

The Netherlands: Elsevier Science B.V.

GLENN, J.C. (1999): Statistical modeling: From time series to simulation. En J. Glenn (Ed.), Futures Research Methodology Version 1.0, (Chapter 13). Washington DC: Millennium Project,

World Federation of UN Associations.

GORDON, T.J. (1992): «The methods of futures research», The ANNALS of the American Academy

of Political and Social Science, Vol. 522, Nº 1, pp. 36-44.

GRILICHES, Z. (1957): «Hybrid corn: An exploration in the economics of technical change», Econometrica, Vol. 25, Nº 4, pp. 501-522.

GRUBER, H. y VERBOVEN, F. (2001): «The evolution of markets under entry standards and regulation: The case of Global Mobile Telecommunications», International Journal of Industrial

Organization, Vol. 19, Nº 7, pp. 1189-1212.

HOBBS, B.F., HELMAN, U., JITPRAPAIKULSARN, S., KONDA, S. y MARATUKULAM, D.

(1998): «Artificial neural networks for short-term energy forecasting: Accuracy and economic

value», Neurocomputing, Vol. 23, Nº 1-3, pp. 71-84.

HORNIK, K., STINCHCOMBE, M. y WHITE, H. (1989): Multilayer Feedforward Networks are

Universal Approximators. Neural Networks, Vol. 2, Nº 5, pp. 359-366.

ISASI, V.P. y GALVAN, L.I.M. (2004): Redes de neuronas artificiales: Un enfoque práctico. Madrid: Pearson Prentice Hall.

JOHNSON, D.E. (1989): «Harnessing the power of multiple regression», Chemical Engineering,

November, pp. 176-188.

JOSEPH, B., WANG, F.H. y SHIEH, S.S. (1992): «Exploratory data analysis: A comparison of

statistical methods with artificial neural networks», Computers and Chemical Engineering, Vol.

, Nº 4, pp. 413-423.

KEAT, P.G. y YOUNG, P.K. (2004): Economía de empresa (4ª ed.). México: Pearson Prentice

Hall.

KINNEAR, T. y TAYLOR, J. (2000): Investigación de mercados: Un enfoque aplicado (5ª ed.).

Colombia: McGRaw-Hill.

KOTLER, P. (1993): Dirección de la mercadotecnia: análisis, planeación, implementación y control (7ª ed.). México: Prentice Hall.

KOTLER, P. (1996): Dirección de la mercadotecnia: Análisis, planeación, implementación y control (8ª ed.). México: Prentice Hall.

Published

2023-12-15

How to Cite

Juan Villagómez. (2023). Demand for fixed and mobile telephony: An application of artificial neural networks. TEC EMPRESARIAL, 18(2), 1151–1163. https://doi.org/10.1229/tecempresarialjournal.v18i2.339